
EECS 482 Introduction to Operating Systems
Spring/Summer 2020

Lecture 22: Remote procedure calls

Based on slides by Harsha V. Madhyastha
and Manos Kapritsos

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Agenda
1. Bonus lecture on sockets Tue 3:00 pm.

2. Remote procedure calls.

2

Agenda
1. Bonus lecture on sockets Tue 3:00 pm.

2. Remote procedure calls.

3

Bonus lecture
Tues 3:00 pm, streamed and recorded as usual.

This is material from my search engine class.

Will not appear on the final.

Intended only to help you understand how sockets and
servers work to help you with P4.

4

Agenda
1. Bonus lecture on sockets Tue 3:00 pm.

2. Remote procedure calls.

5

6

Remote Procedure Calls
Mechanism for allowing an application on one
machine to call a procedure on another machine:

RPC Client

x = y(p);

RPC Server

int y(int z)
{ ... }

Network

parameters
results

Remote Procedure Call
Hide complexity of message-based communication from
developers.
Procedure calls more natural for inter-process communication.

Goals of RPC:
Client sending request  function call
Client receiving response  returning from function
Server receiving request  function invocation
Server sending response  returning to caller

7

RPC abstraction via stub functions on client and server

8

client

server stub

client stub

server

call

return

call

return

sendreceive

receivesend

Client machine

Server machine

RPC stubs
Client stub

Constructs message with function name and parameters
Sends request message to server
Receives response from server
Returns response to client

Server stub
Receives request message
Invokes correct function with specified parameters
Constructs response message with return value
Sends response to client stub

9

RPC abstraction via stub functions
on client and server

10

client

server stub

client stub

server

call

return

call

return

sendreceive

receivesend

Client machine

Server machine

11

Client side

int Remote(int n)
{
int status;
send(sock, &n,

sizeof(n));
recv(sock, &status,

sizeof(status));
return(status);
}

Server side

void RemoteStub()
{
int n, result;
recv (sock, &n,

sizeof(n));
status = Local(n);
send (sock, &status,

sizeof(status));
}

Producer-consumer using RPC

Generation of stubs
Stubs can be generated automatically
What do we need to know to do this?

Interface description:
Types of arguments and return value

e.g., rpcgen on Linux

12

13

RPC Transparency
RPC makes remote communication look like local procedure calls

Basis of CORBA, Thrift, Microsoft SOAP, Java RMI, …

What factors break illusion?
Failures Remote nodes/networks can fail.
Performance Remote communication is inherently slower.
Service discovery Client stub needs to bind to server stub on

an appropriate machine.

RPC serialization
Basic strategy is to transfer
information between possibly
dissimilar machines by serializing it
over a network using a protocol.

Often called marshalling.

Generally support all the usual C++
types, including structs and classes.

14

Lots of possible
choices for serializing.

Binary
json
XML
Compressed
HTTP MIME types

RPC Arguments
Can I have pointers as arguments?
How to pass a pointer as argument?

Client stub transfers data at the pointer
Server stub stores received data and passes pointer

Challenge:
Data representation should be same on either end
Example: I want to send a 4-byte integer:

0xDE AD BE EF
Send byte 0, then byte 1, byte 2, byte 3
What is byte 0?

15

Endianness

16

Machines differ in how they store integers and we need
to account for this in transferring data.

0x0A0B0C0D
32-bit integer

0A|0B|0C|0D

Big-endian byte order

0D|0C|0B|0A

Little-endian byte order

	EECS 482 Introduction to Operating Systems�Spring/Summer 2020�Lecture 22: Remote procedure calls
	Agenda
	Agenda
	Bonus lecture
	Agenda
	Remote Procedure Calls
	Remote Procedure Call
	RPC abstraction via stub functions on client and server
	RPC stubs
	RPC abstraction via stub functions on client and server
	Slide Number 11
	Generation of stubs
	RPC Transparency
	RPC serialization
	RPC Arguments
	Endianness

